4736

4736 Decision Mathematics 1

	TO BE ANSWERED ON INSERT				
1	(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	Evidence of updating at C , D , E or F All temporary labels correct, with no extras	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	All permanent labels correct	
		3 4 5 6 6 9 5 4 7 6 10 9			
		Path: $A-B-C-D-E-F$ Weight: 9	B1 B1	cao cao	[5]
	(ii)	Total weight of all arcs = 25	B1	Total weight = 25 (may be implied from weight)	
		joining B to E is $B - C - E = 3$.	M1	B to $E = 3$	
		Weight: 28 Route: (example)	A1	28 (cao)	
		A-B-D-F-E-C-B-C-D-E - D - C - A	B1	A valid closed route that uses <i>BC</i> , <i>CD</i> and <i>DE</i> twice and all other arcs once	[4]
	(iii)	A-B-E-F	B1	cao	
		Graph is now Eulerian, so no need to repeat arcs	B1	Eulerian (or equivalent)	[2]
				Total =	11

4736

2	(i)	A graph cannot have an odd number of odd vertices (nodes)	B1	Or equivalent (eg $3 \times 5 = 15 \Rightarrow 7\frac{1}{2}$ arcs) Not from a diagram of a specific case	[1]
	(ii)	It has exactly two odd nodes	B1	2 odd nodes	
		eg CABCDEAD	B1	A valid semi-Eulerian trail	[2]
	(iii)	AE = 2 $AC = 3$ $AB = 5$ $CD = 7$ $A = B$ $C = D$	B1 B1	Correct tree (vertices must be labelled)	
		Weight = 17	B1	application of Prim, starting at <i>A</i> (working shown on a network or matrix) 17	[3]
	(iv)	Lower bound = 29 A - E - D - F - C - B - A = 34 F - C - A - E - D and $F - D - C - A - EVertex B is missed out$	B1 M1 A1 B1	29 or 12 + their tree weight from (iii) A - E - D - F - C - 34, from correct working seen Correctly explaining why method fails, need to have explicitly considered both cases	[4]
				Total =	10

4736

3	(i)	x = number of clients who use program X				
		y = number of clients who use program Y		Number of clients on X and Y, respectively	[1]	
	(ii)	Spin cycle: $30x + 10y \le 180$ $\Rightarrow 3x + y \le 18$	B1	$3x + y \le 18$, or equivalent, simplified		
		Rower: $10x \le 40$ $\Rightarrow x \le 4$	B1	$x \le 4$, or equivalent, simplified		
		Free weights: $20x + 30y \le 300$ $\Rightarrow 2x + 3y \le 30$	B1	$2x + 3y \le 30$, or equivalent, simplified	[3]	
				Allow use of slack variables instead of inequalities		
	(iii)	Both must take non-negative integer values	B1	Non-negative and integer	[1]	
				Accept $x + y \le 12$ as an alternative answer		
	(iv)	y 10 6 6 7 7 7 1 2 3 4 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	 B1 M1 A1 M1 M1 A1 	Axes scaled and labelled appropriately (on graph paper) Boundaries of their three constraints shown correctly (non-negativity may be missed) Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao) Follow through their graph if possible x = 3.4, y = 7.7 may be implied from (3, 8) Could be implied from identifying point (3, 8) in any form cao, in context and including program Z	[3]	
	Total = 11					

4736

4	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 M1 A1	 15 A's, 4 D's, 3 C's, 8B's (but not just A D C B) Three boxes each containing A A A A A (or shown using weights) A box containing all the rest Completely correct, including order of packing into boxes 	
		Cannot fit all the items into box 4 There is only room for one <i>B</i> in a box	B1	Any identification of a (specific) volume conflict	[5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B B B B B B B B C C C D D D A	B1	8 <i>B</i> 's, 3 <i>C</i> 's, 4 <i>D</i> 's, 15 <i>A</i> 's (but not just <i>B C D A</i>)	
		Box 1BDAABox 2BDAA	M1	Four boxes each containing <i>B D A A</i> (in any order)	
		Box 3BDAABox 4BDAABox 5BAAAABox 6BAA	M1	Using exactly 9 boxes, the first eight of which each contain a B (with or without other items) and the ninth contains three C 's.	
		Box 7 B Box 8 B Box 9 C C	A1	Completely correct, including order of packing into boxes	
		Box 5 is over the weight limit More than five A's is too heavy for one box	B1	Any identification of a (specific) weight conflict	[5]
	(iii)	Items may be the wrong shape for the boxes eg too tall	B1	Reference to shape, height, etc. but not practical issues connected with the food	[1]
				Total =	11

For reference					
	Item type	Α	В	С	D
	Number to be packed	15	8	3	4
	Length (cm)	10	40	20	10
	Width (cm)	10	30	50	40
	Height (cm)	10	20	10	10
	Volume (cm ³)	1 000	24 000	10 000	4 000
	Weight (g)	1 000	250	300	400

4736

5	(i)	$\begin{array}{l} \text{Minimise } 2a - 3b + c + 18 \\ \Rightarrow \text{ minimise } 2(20 - x) - 3(10 - y) + (8 - z) + 18 \\ \Rightarrow \text{ minimise } -2x + 3y - z \\ \Rightarrow \text{ maximise } 2x - 3y + z \qquad (given) \\ a + b - c \ge 14 \\ \Rightarrow (20 - x) + (10 - y) - (8 - z) \ge 14 \\ \Rightarrow x + y - z \le 8 \qquad (given) \\ -2a + 3c \le 50 \\ \Rightarrow -2(20 - x) + 3(8 - z) \le 50 \\ \Rightarrow 2x - 3z \le 66 \qquad (given) \\ 10 + 4a \ge 5b \\ \Rightarrow 10 + 4(20 - x) \ge 5(10 - y) \\ \Rightarrow 4x - 5y \le 40 \qquad (given) \end{array}$	B1 M1	(Constant has no effect on slope of objective) Replacing <i>a</i> , <i>b</i> and <i>c</i> in objective to get -2x + 3y - z (Condone omission of conversion to maximisation here) Replacing <i>a</i> , <i>b</i> and <i>c</i> in the first three constraints to get given expressions	
		$\begin{aligned} a &\leq 20 \Rightarrow 20 \text{-}x \leq 20 \Rightarrow x \geq 0\\ b &\leq 10 \Rightarrow 10 \text{-}y \leq 10 \Rightarrow y \geq 0\\ c &\leq 8 \Rightarrow 8 \text{-}z \leq 8 \Rightarrow z \geq 0 \end{aligned}$	A1	Showing how $a \le 20$, $b \le 10$, $c \le 8$ give $x \ge 0$, $y \ge 0$, $z \ge 0$	[3]
	(ii)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1	Constraint rows correct, with three slack variable columns Objective row correct	[2]
		x and z columns have negative entries in objective row, but z column has no positive entries in constraint rows, so pivot on x col $8 \div 1 = 8$: $66 \div 2 = 33$: $40 \div 4 = 10$	M1	Choosing to pivot on <i>x</i> column (may be implied from pivot choice)	
		Least ratio is $8 \div 1$, so pivot on 1 from x col	A1	Calculations seen or referred to and correct pivot choice made (cao)	[2]
		New row $2 = row 2$ New row $1 = row 1 + 2(new row 2)$ New row $3 = row 3 - 2(new row 2)$	M1	Pivot row unchanged (may be implied) or follow through for their +ve pivot	
		New row $4 = row 4 - 4(new row 2)$	A1	Calculations for other rows shown (cao)	[2]
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	An augmented tableau with three basis columns, non-negative values in final column and value of objective having not decreased Correct tableau after one iteration (cao)	[2]
		x = 8, y = 0, z = 0	B1	Non-negative values for x , y and z from their tableau	
		$x = 8 \Rightarrow a = 20 - 8 = 12$ $y = 0 \Rightarrow b = 10 - 0 = 10$	M1	Putting their values for x, y and z into a = 20 - x, $b = 10 - y$ and $c = 8 - z$	
		$z = 0 \Rightarrow c = 8 - 0 = 8$	A1	Correct values for a , b and c , from their non-negative x , y and z	[3]
	(iii)	$x \le 20, \ y \le 10 \text{ and } z \le 8$	M1 A1	20, 10, 8 Correct inequalities for <i>x</i> , <i>y</i> and <i>z</i>	[2]
				Total –	16

4736

		TO BE ANSWERED ON INSERT					
6	(i)	$10 \frac{1}{2n(n-1)}$		10 1+2++(n -1) seen, or equivalent Check that sum stops at n -1 not n	[2]		
	(ii)(a)	9 1 2 3 45		Their 10 minus 1 1, 2 and 3 45 following from method mark earned	[3]		
				cao	r. 1		
	(b)	1+2+3++(N-1) = $\frac{1}{2}N(N-1)$, where $N = \frac{1}{2}n(n-1)$ = $\frac{1}{4}n(n-1)(\frac{1}{2}n(n-1) - 1)$ (given)		$1+2+3++(N-1)$ or $\frac{1}{2}N(N-1)$, where $N = \frac{1}{2}n(n-1)$ Convincingly achieving the given result	[2]		
	(iii)	M1 Vertices in treeM2 Arcs in treeM3 Vertices not in treeM4 Sorted list $D E$ $D 2 E$ $D E A$ $ABCDE$ $D E$ $D 2 E$ $A 3 E$ $B C$ $D E A$ $D 2 E$ $A 3 E$ $B C$ $D E A C$ $D 2 E$ $A 3 E$ $B C$ $D E A C$ $D 2 E$ $A 3 E$ B $D E A C$ $D 2 E$ $A 3 E$ B $D E A C$ $D 2 E$ $A 3 E$ B $C 5 D$ B $A 4 C$ $B 6 E$	M1 M1 M1 A1	(Order of entries in <i>M1</i> , <i>M2</i> and <i>M3</i> does not matter) Arc $\underline{A \mid 3 \mid E}$ is added to <i>M2</i> , <i>A</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{A \mid 4 \mid C}$ is added to <i>M2</i> , <i>C</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{C \mid 5 \mid D}$ is not added to <i>M2</i> and arc $\underline{B \mid 6 \mid E}$ is added to <i>M2</i> cao (lists <i>M1</i> , <i>M2</i> and <i>M3</i> totally correct, ignore what is done in list <i>M4</i>).	[4]		
	(iv)	$30 \times \left(\frac{500}{100}\right)^4$	M1	Or equivalent			
		= 18750 seconds	A1	cao, with units (312 min 30 sec or 5 hours 12 min 30 sec)	[2]		
	Total = 13						