4736 Decision Mathematics 1

TO BE ANSWERED ON INSERT				
1 (i)	Path: $\quad A-B-C-D-E-F$ Weight: 9	M1 A1 B1 B1 B1	Evidence of updating at C, D, E or F All temporary labels correct, with no extras All permanent labels correct	[5]
(ii)	Total weight of all arcs $=25$ Only odd nodes are B and E. Least weight path joining B to E is $B-C-E=3$. Weight: 28 Route: (example) $A-B-D-F-E-C-B-C-D-E-D-C-A$	B1 M1 A1 B1	Total weight $=25$ (may be implied from weight) B to $E=3$ 28 (cao) A valid closed route that uses $B C, C D$ and $D E$ twice and all other arcs once	[4]
(iii)	$A-B-E-F$ Graph is now Eulerian, so no need to repeat arcs	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	cao Eulerian (or equivalent)	[2]
			Total $=$	11

2	(i)	A graph cannot have an odd number of odd vertices (nodes)	B1	Or equivalent (eg $3 \times 5=15 \Rightarrow 71 / 2$ arcs) Not from a diagram of a specific case	[1]
	(ii)	It has exactly two odd nodes eg CABCDEAD	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2 odd nodes A valid semi-Eulerian trail	[2]
	(iii)	$\begin{aligned} & \hline A E=2 \\ & A C=3 \\ & A B=5 \\ & C D=7 \end{aligned}$ Weight $=17$	B1 B1 B1	Correct tree (vertices must be labelled) Order of choosing arcs in a valid application of Prim, starting at A (working shown on a network or matrix) 17	[3]
	(iv)	Lower bound = 29 $\begin{aligned} & A-E-D-F-C-B-A \\ & =34 \\ & F-C-A-E-D \text { and } F-D-C-A-E \end{aligned}$ Vertex B is missed out	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	29 or 12 + their tree weight from (iii) $A-E-D-F-C-$ 34 , from correct working seen Correctly explaining why method fails, need to have explicitly considered both cases	[4]
Total = 10					

For reference
(ii)

(iii) (iv)

	A	B	C	D	E
A	-	5	3	8	2
B	5	-	6	-	-
C	3	6	-	7	-
D	8	-	7	-	9
E	2	-	-	9	-

\begin{tabular}{|c|c|c|c|c|}
\hline 3 (i) \& \(x=\) number of clients who use program \(X\) \(y=\) number of clients who use program \(Y\) \& B1 \& Number of clients on \(X\) and \(Y\), respectively \& [1] \\
\hline (ii) \& \begin{tabular}{ll}
Spin cycle: \& \(30 x+10 y \leq 180\) \\
\& \(\Rightarrow 3 x+y \leq 18\) \\
Rower: \& \(10 x \leq 40\) \\
\& \(\Rightarrow x \leq 4\) \\
Free weights: \& \(20 x+30 y \leq 300\) \\
\& \(\Rightarrow 2 x+3 y \leq 30\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& \(3 x+y \leq 18\), or equivalent, simplified \(x \leq 4\), or equivalent, simplified \(2 x+3 y \leq 30\), or equivalent, simplified Allow use of slack variables instead of inequalities \& [3] \\
\hline (iii) \& Both must take non-negative integer values \& B1 \& \begin{tabular}{l}
Non-negative and integer \\
Accept \(x+y \leq 12\) as an alternative answer
\end{tabular} \& [1] \\
\hline (iv) \& \begin{tabular}{l}
 \\
Checking vertices or using a profit line
\[
\begin{aligned}
\& (4,6) \rightarrow 72 \\
\& \left(3 \frac{3}{7}, 7 \frac{5}{7}\right) \rightarrow 77 \frac{1}{7} \text { or }(24 / 7,54 / 7) \rightarrow 77 \frac{1}{7} \\
\& (0,10) \rightarrow 60 \quad(4,0) \rightarrow 36
\end{aligned}
\] \\
Checking other feasible integer points near (non-integer) optimum for continuous problem
\[
(3,8) \rightarrow 75
\] \\
Put 3 clients on program \(X, 8\) on program \(Y\) and 1 on program \(Z\)
\end{tabular} \& B1
M1
A1

M1
M1

A1 \& | Axes scaled and labelled appropriately (on graph paper) |
| :--- |
| Boundaries of their three constraints shown correctly (non-negativity may be missed) |
| Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao) |
| Follow through their graph if possible $x=3.4, y=7.7$ |
| may be implied from $(3,8)$ |
| Could be implied from identifying point $(3,8)$ in any form |
| cao, in context and including program Z | \& [3]

\hline
\end{tabular}

For reference	Item type	A	B	C	D
	Number to be packed	15	8	3	4
	Length (cm)	10	40	20	10
	Width (cm)	10	30	50	40
	Height (cm)	10	20	10	10
	Volume (cm^{3})	1000	24000	10000	4000
	Weight (g)	1000	250	300	400

